Three Main Mutational Pathways in HIV-2 Lead to High-Level Raltegravir and Elvitegravir Resistance: Implications for Emerging HIV-2 Treatment Regimens

نویسندگان

  • Robert A. Smith
  • Dana N. Raugi
  • Charlotte Pan
  • Matthew Coyne
  • Alexandra Hernandez
  • Brad Church
  • Kara Parker
  • James I. Mullins
  • Papa Salif Sow
چکیده

Human immunodeficiency virus type 2 (HIV-2) is intrinsically resistant to non-nucleoside reverse transcriptase inhibitors and exhibits reduced susceptibility to several of the protease inhibitors used for antiretroviral therapy of HIV-1. Thus, there is a pressing need to identify new classes of antiretroviral agents that are active against HIV-2. Although recent data suggest that the integrase strand transfer inhibitors raltegravir and elvitegravir may be beneficial, mutations that are known to confer resistance to these drugs in HIV-1 have been reported in HIV-2 sequences from patients receiving raltegravir-containing regimens. To examine the phenotypic effects of mutations that emerge during raltegravir treatment, we constructed a panel of HIV-2 integrase variants using site-directed mutagenesis and measured the susceptibilities of the mutant strains to raltegravir and elvitegravir in culture. The effects of single and multiple amino acid changes on HIV-2 replication capacity were also evaluated. Our results demonstrate that secondary replacements in the integrase protein play key roles in the development of integrase inhibitor resistance in HIV-2. Collectively, our data define three major mutational pathways to high-level raltegravir and elvitegravir resistance: i) E92Q+Y143C or T97A+Y143C, ii) G140S+Q148R, and iii) E92Q+N155H. These findings preclude the sequential use of raltegravir and elvitegravir (or vice versa) for HIV-2 treatment and provide important information for clinical monitoring of integrase inhibitor resistance in HIV-2-infected individuals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIV-1 resistance patterns to integrase inhibitors in antiretroviral-experienced patients with virological failure on raltegravir-containing regimens.

BACKGROUND Our aim was to study the in vivo viral genetic pathways for resistance to raltegravir, in antiretroviral-experienced patients with virological failure (VF) on raltegravir-containing regimens. METHODS We set up a prospective study including antiretroviral-experienced patients receiving raltegravir-based regimens. Integrase (IN) genotypic resistance analysis was performed at baseline...

متن کامل

HIV-1 Integrase Inhibitor Resistance and Its Clinical Implications

With the approval in 2007 of the first integrase inhibitor (INI), raltegravir, clinicians became better able to suppress virus replication in patients infected with human immunodeficiency virus type 1 (HIV-1) who were harboring many of the most highly drug-resistant viruses. Raltegravir also provided clinicians with additional options for first-line therapy and for the simplification of regimen...

متن کامل

Integrase Strand Transfer Inhibitors in HIV Therapy

HIV drug resistance has been one of the major obstacles to HIV eradication and has contributed to the need for the constant development of new antiretroviral drugs over the past 25 years. With the recent approval of dolutegravir for human therapy by the U.S. Food and Drug Administration, health practitioners may soon have access to three integrase strand transfer inhibitors to treat individuals...

متن کامل

Different Pathways Leading to Integrase Inhibitors Resistance

Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treat...

متن کامل

HIV resistance to raltegravir

Similar to all antiretroviral drugs, failure of raltegravir-based treatment regimens to fully supress HIV replication almost invariably results in emergence of HIV resistance to this new drug. HIV resistance to raltegravir is the consequence of mutations located close to the integrase active site, which can be divided into three main evolutionary pathways: the N155H, the Q148R/H/K and the Y143R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012